Coupled expression of troponin T and troponin I isoforms in single skeletal muscle fibers correlates with contractility.
نویسندگان
چکیده
Striated muscle contraction is powered by actin-activated myosin ATPase. This process is regulated by Ca(2+) via the troponin complex. Slow- and fast-twitch fibers of vertebrate skeletal muscle express type I and type II myosin, respectively, and these myosin isoenzymes confer different ATPase activities, contractile velocities, and force. Skeletal muscle troponin has also diverged into fast and slow isoforms, but their functional significance is not fully understood. To investigate the expression of troponin isoforms in mammalian skeletal muscle and their functional relationship to that of the myosin isoforms, we concomitantly studied myosin, troponin T (TnT), and troponin I (TnI) isoform contents and isometric contractile properties in single fibers of rat skeletal muscle. We characterized a large number of Triton X-100-skinned single fibers from soleus, diaphragm, gastrocnemius, and extensor digitorum longus muscles and selected fibers with combinations of a single myosin isoform and a single class (slow or fast) of the TnT and TnI isoforms to investigate their role in determining contractility. Types IIa, IIx, and IIb myosin fibers produced higher isometric force than that of type I fibers. Despite the polyploidy of adult skeletal muscle fibers, the expression of fast or slow isoforms of TnT and TnI is tightly coupled. Fibers containing slow troponin had higher Ca(2+) sensitivity than that of the fast troponin fibers, whereas fibers containing fast troponin showed a higher cooperativity of Ca(2+) activation than that of the slow troponin fibers. These results demonstrate distinct but coordinated regulation of troponin and myosin isoform expression in skeletal muscle and their contribution to the contractile properties of muscle.
منابع مشابه
ACELL May 45/5
Ogut, Ozgur, Henk Granzier, and Jian-Ping Jin. Acidic and basic troponin T isoforms in mature fast-twitch skeletal muscle and effect on contractility. Am. J. Physiol. 276 (Cell Physiol. 45): C1162–C1170, 1999.—Developmentally regulated alternative RNA splicing generates distinct classes of acidic and basic troponin T (TnT) isoforms. In fast-twitch skeletal muscles, an acidic-to-basic TnT isofor...
متن کاملAdaptation by alternative RNA splicing of slow troponin T isoforms in type 1 but not type 2 Charcot-Marie-Tooth disease.
Slow troponin T (TnT) plays an indispensable role in skeletal muscle function. Alternative RNA splicing in the NH(2)-terminal region produces high-molecular-weight (HMW) and low-molecular-weight (LMW) isoforms of slow TnT. Normal adult slow muscle fibers express mainly HMW slow TnT. Charcot-Marie-Tooth disease (CMT) is a group of inherited peripheral polyneuropathies caused by various neuronal ...
متن کاملTroponin I gene expression during human cardiac development and in end-stage heart failure.
Recent reports have demonstrated the presence of two isoforms of troponin I in the human fetal heart, namely, cardiac troponin I and slow skeletal muscle troponin I. Structural and physiological considerations indicate that these isoforms would confer differing contractile properties on the myocardium, particularly on the phosphorylation-mediated regulation of contractility by adrenergic agonis...
متن کاملAnalysis of myofibrillar proteins and transcripts in adult skeletal muscles of the American lobster Homarus americanus: variable expression of myosins, actin and troponins in fast, slow-twitch and slow-tonic fibres.
Skeletal muscles are diverse in their contractile properties, with many of these differences being directly related to the assemblages of myofibrillar isoforms characteristic of different fibers. Crustacean muscles are similar to other muscles in this respect, although the majority of information about differences in muscle organization comes from vertebrate species. In the present study, we ex...
متن کاملDifferential regulation of myofilament protein isoforms underlying the contractility changes in skeletal muscle unloading.
Weight-bearing skeletal muscles change phenotype in response to unloading. Using the hindlimb suspension rat model, we investigated the regulation of myofilament protein isoforms in correlation to contractility. Four weeks of continuous hindlimb unloading produced progressive atrophy and contractility changes in soleus but not extensor digitorum longus muscle. The unloaded soleus muscle also ha...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 290 2 شماره
صفحات -
تاریخ انتشار 2006